EconPapers    
Economics at your fingertips  
 

Information theoretic similarity measures for content based image retrieval

John Zachary and S. S. Iyengar

Journal of the American Society for Information Science and Technology, 2001, vol. 52, issue 10, 856-867

Abstract: Content‐based image retrieval is based on the idea of extracting visual features from image and using them to index images in a database. The comparisons that determine similarity between images depend on the representations of the features and the definition of appropriate distance function. Most of the research literature uses vectors as the predominate representation given the rich theory of vector spaces. While vectors are an extremely useful representation, their use in large databases may be prohibitive given their usually large dimensions and similarity functions. In this paper, we propose similarity measures and an indexing algorithm based on information theory that permits an image to be represented as a single number. When use in conjunction with vectors, our method displays improved efficiency when querying large databases.

Date: 2001
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asi.1139

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:52:y:2001:i:10:p:856-867

Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890

Access Statistics for this article

More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jamist:v:52:y:2001:i:10:p:856-867