Automatic cataloguing and searching for retrospective data by use of OCR text
Yuen‐Hsien Tseng
Journal of the American Society for Information Science and Technology, 2001, vol. 52, issue 5, 378-390
Abstract:
This article describes our efforts in supporting information retrieval from OCR degraded text. In particular, we report our approach to an automatic cataloging and searching contest for books in multiple languages. In this contest, 500 books in English, German, French, and Italian published during the 1770s to 1970s are scanned into images and OCRed to digital text. The goal is to use only automatic ways to extract information for sophisticated searching. We adopted the vector space retrieval model, an n‐gram indexing method, and a special weighting scheme to tackle this problem. Although the performance by this approach is slightly inferior to the best approach, which is mainly based on regular expression match, one advantage of our approach is that it is less language dependent and less layout sensitive, thus is readily applicable to other languages and document collections. Problems of OCR text retrieval for some Asian languages are also discussed in this article, and solutions are suggested.
Date: 2001
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/1532-2890(2001)9999:99993.0.CO;2-A
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:52:y:2001:i:5:p:378-390
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().