EconPapers    
Economics at your fingertips  
 

Using graded relevance assessments in IR evaluation

Jaana Kekäläinen and Kalervo Järvelin

Journal of the American Society for Information Science and Technology, 2002, vol. 53, issue 13, 1120-1129

Abstract: This article proposes evaluation methods based on the use of nondichotomous relevance judgements in IR experiments. It is argued that evaluation methods should credit IR methods for their ability to retrieve highly relevant documents. This is desirable from the user point of view in modern large IR environments. The proposed methods are (1) a novel application of P‐R curves and average precision computations based on separate recall bases for documents of different degrees of relevance, and (2) generalized recall and precision based directly on multiple grade relevance assessments (i.e., not dichotomizing the assessments). We demonstrate the use of the traditional and the novel evaluation measures in a case study on the effectiveness of query types, based on combinations of query structures and expansion, in retrieving documents of various degrees of relevance. The test was run with a best match retrieval system (InQuery1) in a text database consisting of newspaper articles. To gain insight into the retrieval process, one should use both graded relevance assessments and effectiveness measures that enable one to observe the differences, if any, between retrieval methods in retrieving documents of different levels of relevance. In modern times of information overload, one should pay attention, in particular, to the capability of retrieval methods retrieving highly relevant documents.

Date: 2002
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asi.10137

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:53:y:2002:i:13:p:1120-1129

Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890

Access Statistics for this article

More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jamist:v:53:y:2002:i:13:p:1120-1129