Querying and ranking XML documents
Torsten Schlieder and
Holger Meuss
Journal of the American Society for Information Science and Technology, 2002, vol. 53, issue 6, 489-503
Abstract:
XML represents both content and structure of documents. Taking advantage of the document structure promises to greatly improve the retrieval precision. In this article, we present a retrieval technique that adopts the similarity measure of the vector space model, incorporates the document structure, and supports structured queries. Our query model is based on tree matching as a simple and elegant means to formulate queries without knowing the exact structure of the data. Using this query model we propose a logical document concept by deciding on the document boundaries at query time. We combine structured queries and term‐based ranking by extending the term concept to structural terms that include substructures of queries and documents. The notions of term frequency and inverse document frequency are adapted to logical documents and structural terms. We introduce an efficient technique to calculate all necessary term frequencies and inverse document frequencies at query time. By adjusting parameters of the retrieval process we are able to model two contrary approaches: the classical vector space model, and the original tree matching approach.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.10060
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:53:y:2002:i:6:p:489-503
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().