EconPapers    
Economics at your fingertips  
 

Relevance data for language models using maximum likelihood

David Bodoff, Bin Wu and K. Y. Michael Wong

Journal of the American Society for Information Science and Technology, 2003, vol. 54, issue 11, 1050-1061

Abstract: We present a preliminary empirical test of a maximum likelihood approach to using relevance data for training information retrieval (IR) parameters. Similar to language models, our method uses explicitly hypothesized distributions for documents and queries, but we add to this an explicitly hypothesized distribution for relevance judgments. The method unifies document‐oriented and query‐oriented views. Performance is better than the Rocchio heuristic for document and/or query modification. The maximum likelihood methodology also motivates a heuristic estimate of the MLE optimization. The method can be used to test competing hypotheses regarding the processes of authors' term selection, searchers' term selection, and assessors' relevancy judgments.

Date: 2003
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asi.10300

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:54:y:2003:i:11:p:1050-1061

Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890

Access Statistics for this article

More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jamist:v:54:y:2003:i:11:p:1050-1061