EconPapers    
Economics at your fingertips  
 

A novel method for discovering fuzzy sequential patterns using the simple fuzzy partition method

Ruey‐Shun Chen and Yi‐Chung Hu

Journal of the American Society for Information Science and Technology, 2003, vol. 54, issue 7, 660-670

Abstract: Sequential patterns refer to the frequently occurring patterns related to time or other sequences, and have been widely applied to solving decision problems. For example, they can help managers determine which items were bought after some items had been bought. However, since fuzzy sequential patterns described by natural language are one type of fuzzy knowledge representation, they are helpful in building a prototype fuzzy knowledge base in a business. Moreover, each fuzzy sequential pattern consisting of several fuzzy sets described by the natural language is well suited for the thinking of human subjects and will help to increase the flexibility for users in making decisions. Additionally, since the comprehensibility of fuzzy representation by human users is a criterion in designing a fuzzy system, the simple fuzzy partition method is preferable. In this method, each attribute is partitioned by its various fuzzy sets with pre‐specified membership functions. The advantage of the simple fuzzy partition method is that the linguistic interpretation of each fuzzy set is easily obtained. The main aim of this paper is exactly to propose a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method. Two numerical examples are utilized to demonstrate the usefulness of the proposed method.

Date: 2003
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asi.10258

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:54:y:2003:i:7:p:660-670

Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890

Access Statistics for this article

More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jamist:v:54:y:2003:i:7:p:660-670