Predicting Library of Congress classifications from Library of Congress subject headings
Eibe Frank and
Gordon W. Paynter
Journal of the American Society for Information Science and Technology, 2004, vol. 55, issue 3, 214-227
Abstract:
This paper addresses the problem of automatically assigning a Library of Congress Classification (LCC) to a work given its set of Library of Congress Subject Headings (LCSH). LCCs are organized in a tree: The root node of this hierarchy comprises all possible topics, and leaf nodes correspond to the most specialized topic areas defined. We describe a procedure that, given a resource identified by its LCSH, automatically places that resource in the LCC hierarchy. The procedure uses machine learning techniques and training data from a large library catalog to learn a model that maps from sets of LCSH to classifications from the LCC tree. We present empirical results for our technique showing its accuracy on an independent collection of 50,000 LCSH/LCC pairs.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.10360
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:55:y:2004:i:3:p:214-227
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().