Text mining: Generating hypotheses from MEDLINE
Padmini Srinivasan
Journal of the American Society for Information Science and Technology, 2004, vol. 55, issue 5, 396-413
Abstract:
Hypothesis generation, a crucial initial step for making scientific discoveries, relies on prior knowledge, experience, and intuition. Chance connections made between seemingly distinct subareas sometimes turn out to be fruitful. The goal in text mining is to assist in this process by automatically discovering a small set of interesting hypotheses from a suitable text collection. In this report, we present open and closed text mining algorithms that are built within the discovery framework established by Swanson and Smalheiser. Our algorithms represent topics using metadata profiles. When applied to MEDLINE, these are MeSH based profiles. We present experiments that demonstrate the effectiveness of our algorithms. Specifically, our algorithms successfully generate ranked term lists where the key terms representing novel relationships between topics are ranked high.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1002/asi.10389
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:55:y:2004:i:5:p:396-413
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().