EconPapers    
Economics at your fingertips  
 

PRAW—A PRivAcy model for the Web

Bracha Shapira, Yuval Elovici, Adlay Meshiach and Tsvi Kuflik

Journal of the American Society for Information Science and Technology, 2005, vol. 56, issue 2, 159-172

Abstract: Web navigation enables easy access to vast amounts of information and services. However, it also poses a major risk to users' privacy. Various eavesdroppers constantly attempt to violate users' privacy by tracking their navigation activities and inferring their interests and needs (profiles). Users who wish to keep their intentions secret forego useful services to avoid exposure. The computer security community has concentrated on improving users' privacy by concealing their identity on the Web. However, users may want or need to identify themselves over the Net to receive certain services but still retain their interests, needs, and intentions in private. PRAW—a PRivAcy model for the Web suggested in this paper—is aimed at hiding users' navigation tracks to prevent eavesdroppers from inferring their profiles but still allowing them to be identified. PRAW is based on continuous generation of fake transactions in various fields of interests to confuse eavesdroppers' automated programs, thus providing them false data. A privacy measure is defined that reflects the difference between users' actual profile and the profile that eavesdroppers might infer. A prototype system was developed to examine PRAW's feasibility and conduct experiments to test its effectiveness. Encouraging results and their analysis are presented, as well as possible attacks and known limitations.

Date: 2005
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asi.20107

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:56:y:2005:i:2:p:159-172

Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890

Access Statistics for this article

More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jamist:v:56:y:2005:i:2:p:159-172