The impact analysis of language differences on an automatic multilingual text summarization system
Fu Lee Wang and
Christopher C. Yang
Journal of the American Society for Information Science and Technology, 2006, vol. 57, issue 5, 684-696
Abstract:
Based on the salient features of the documents, automatic text summarization systems extract the key sentences from source documents. This process supports the users in evaluating the relevance of the extracted documents returned by information retrieval systems. Because of this tool, efficient filtering can be achieved. Indirectly, these systems help to resolve the problem of information overloading. Many automatic text summarization systems have been implemented for use with different languages. It has been established that the grammatical and lexical differences between languages have a significant effect on text processing. However, the impact of the language differences on the automatic text summarization systems has not yet been investigated. The authors provide an impact analysis of language difference on automatic text summarization. It includes the effect on the extraction processes, the scoring mechanisms, the performance, and the matching of the extracted sentences, using the parallel corpus in English and Chinese as the tested object. The analysis results provide a greater understanding of language differences and promote the future development of more advanced text summarization techniques.
Date: 2006
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asi.20330
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:57:y:2006:i:5:p:684-696
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().