A comparative evaluation of search techniques for query‐by‐humming using the MUSART testbed
Roger B. Dannenberg,
William P. Birmingham,
Bryan Pardo,
Ning Hu,
Colin Meek and
George Tzanetakis
Journal of the American Society for Information Science and Technology, 2007, vol. 58, issue 5, 687-701
Abstract:
Query‐by‐humming systems offer content‐based searching for melodies and require no special musical training or knowledge. Many such systems have been built, but there has not been much useful evaluation and comparison in the literature due to the lack of shared databases and queries. The MUSART project testbed allows various search algorithms to be compared using a shared framework that automatically runs experiments and summarizes results. Using this testbed, the authors compared algorithms based on string alignment, melodic contour matching, a hidden Markov model, n‐grams, and CubyHum. Retrieval performance is very sensitive to distance functions and the representation of pitch and rhythm, which raises questions about some previously published conclusions. Some algorithms are particularly sensitive to the quality of queries. Our queries, which are taken from human subjects in a realistic setting, are quite difficult, especially for n‐gram models. Finally, simulations on query‐by‐humming performance as a function of database size indicate that retrieval performance falls only slowly as the database size increases.
Date: 2007
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asi.20532
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:58:y:2007:i:5:p:687-701
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().