EconPapers    
Economics at your fingertips  
 

Hierarchical summarization of large documents

Christopher C. Yang and Fu Lee Wang

Journal of the American Society for Information Science and Technology, 2008, vol. 59, issue 6, 887-902

Abstract: Many automatic text summarization models have been developed in the last decades. Related research in information science has shown that human abstractors extract sentences for summaries based on the hierarchical structure of documents; however, the existing automatic summarization models do not take into account the human abstractor's behavior of sentence extraction and only consider the document as a sequence of sentences during the process of extraction of sentences as a summary. In general, a document exhibits a well‐defined hierarchical structure that can be described as fractals—mathematical objects with a high degree of redundancy. In this article, we introduce the fractal summarization model based on the fractal theory. The important information is captured from the source document by exploring the hierarchical structure and salient features of the document. A condensed version of the document that is informatively close to the source document is produced iteratively using the contractive transformation in the fractal theory. The fractal summarization model is the first attempt to apply fractal theory to document summarization. It significantly improves the divergence of information coverage of summary and the precision of summary. User evaluations have been conducted. Results have indicated that fractal summarization is promising and outperforms current summarization techniques that do not consider the hierarchical structure of documents.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/asi.20781

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:59:y:2008:i:6:p:887-902

Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890

Access Statistics for this article

More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jamist:v:59:y:2008:i:6:p:887-902