Domain‐independent automatic keyphrase indexing with small training sets
Olena Medelyan and
Ian H. Witten
Journal of the American Society for Information Science and Technology, 2008, vol. 59, issue 7, 1026-1040
Abstract:
Keyphrases are widely used in both physical and digital libraries as a brief, but precise, summary of documents. They help organize material based on content, provide thematic access, represent search results, and assist with navigation. Manual assignment is expensive because trained human indexers must reach an understanding of the document and select appropriate descriptors according to defined cataloging rules. We propose a new method that enhances automatic keyphrase extraction by using semantic information about terms and phrases gleaned from a domain‐specific thesaurus. The key advantage of the new approach is that it performs well with very little training data. We evaluate it on a large set of manually indexed documents in the domain of agriculture, compare its consistency with a group of six professional indexers, and explore its performance on smaller collections of documents in other domains and of French and Spanish documents.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/asi.20790
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:59:y:2008:i:7:p:1026-1040
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().