EconPapers    
Economics at your fingertips  
 

Computational methods in authorship attribution

Moshe Koppel, Jonathan Schler and Shlomo Argamon

Journal of the American Society for Information Science and Technology, 2009, vol. 60, issue 1, 9-26

Abstract: Statistical authorship attribution has a long history, culminating in the use of modern machine learning classification methods. Nevertheless, most of this work suffers from the limitation of assuming a small closed set of candidate authors and essentially unlimited training text for each. Real‐life authorship attribution problems, however, typically fall short of this ideal. Thus, following detailed discussion of previous work, three scenarios are considered here for which solutions to the basic attribution problem are inadequate. In the first variant, the profiling problem, there is no candidate set at all; in this case, the challenge is to provide as much demographic or psychological information as possible about the author. In the second variant, the needle‐in‐a‐haystack problem, there are many thousands of candidates for each of whom we might have a very limited writing sample. In the third variant, the verification problem, there is no closed candidate set but there is one suspect; in this case, the challenge is to determine if the suspect is or is not the author. For each variant, it is shown how machine learning methods can be adapted to handle the special challenges of that variant.

Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
https://doi.org/10.1002/asi.20961

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:60:y:2009:i:1:p:9-26

Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890

Access Statistics for this article

More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jamist:v:60:y:2009:i:1:p:9-26