A survey of modern authorship attribution methods
Efstathios Stamatatos
Journal of the American Society for Information Science and Technology, 2009, vol. 60, issue 3, 538-556
Abstract:
Authorship attribution supported by statistical or computational methods has a long history starting from the 19th century and is marked by the seminal study of Mosteller and Wallace (1964) on the authorship of the disputed “Federalist Papers.” During the last decade, this scientific field has been developed substantially, taking advantage of research advances in areas such as machine learning, information retrieval, and natural language processing. The plethora of available electronic texts (e.g., e‐mail messages, online forum messages, blogs, source code, etc.) indicates a wide variety of applications of this technology, provided it is able to handle short and noisy text from multiple candidate authors. In this article, a survey of recent advances of the automated approaches to attributing authorship is presented, examining their characteristics for both text representation and text classification. The focus of this survey is on computational requirements and settings rather than on linguistic or literary issues. We also discuss evaluation methodologies and criteria for authorship attribution studies and list open questions that will attract future work in this area.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
https://doi.org/10.1002/asi.21001
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:60:y:2009:i:3:p:538-556
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().