Measuring the likelihood property of scoring functions in general retrieval models
Richard Bache,
Mark Baillie and
Fabio Crestani
Journal of the American Society for Information Science and Technology, 2009, vol. 60, issue 6, 1294-1297
Abstract:
Although retrieval systems based on probabilistic models will rank the objects (e.g., documents) being retrieved according to the probability of some matching criterion (e.g., relevance), they rarely yield an actual probability, and the scoring function is interpreted to be purely ordinal within a given retrieval task. In this brief communication, it is shown that some scoring functions possess the likelihood property, which means that the scoring function indicates the likelihood of matching when compared to other retrieval tasks, which is potentially more useful than pure ranking although it cannot be interpreted as an actual probability. This property can be detected by using two modified effectiveness measures: entire precision and entire recall.
Date: 2009
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asi.21048
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:60:y:2009:i:6:p:1294-1297
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().