How to normalize cooccurrence data? An analysis of some well‐known similarity measures
Nees Jan van Eck and
Ludo Waltman
Journal of the American Society for Information Science and Technology, 2009, vol. 60, issue 8, 1635-1651
Abstract:
In scientometric research, the use of cooccurrence data is very common. In many cases, a similarity measure is employed to normalize the data. However, there is no consensus among researchers on which similarity measure is most appropriate for normalization purposes. In this article, we theoretically analyze the properties of similarity measures for cooccurrence data, focusing in particular on four well‐known measures: the association strength, the cosine, the inclusion index, and the Jaccard index. We also study the behavior of these measures empirically. Our analysis reveals that there exist two fundamentally different types of similarity measures, namely, set‐theoretic measures and probabilistic measures. The association strength is a probabilistic measure, while the cosine, the inclusion index, and the Jaccard index are set‐theoretic measures. Both our theoretical and our empirical results indicate that cooccurrence data can best be normalized using a probabilistic measure. This provides strong support for the use of the association strength in scientometric research.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (208)
Downloads: (external link)
https://doi.org/10.1002/asi.21075
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:60:y:2009:i:8:p:1635-1651
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().