CRCTOL: A semantic‐based domain ontology learning system
Xing Jiang and
Ah‐Hwee Tan
Journal of the American Society for Information Science and Technology, 2010, vol. 61, issue 1, 150-168
Abstract:
Domain ontologies play an important role in supporting knowledge‐based applications in the Semantic Web. To facilitate the building of ontologies, text mining techniques have been used to perform ontology learning from texts. However, traditional systems employ shallow natural language processing techniques and focus only on concept and taxonomic relation extraction. In this paper we present a system, known as Concept‐Relation‐Concept Tuple‐based Ontology Learning (CRCTOL), for mining ontologies automatically from domain‐specific documents. Specifically, CRCTOL adopts a full text parsing technique and employs a combination of statistical and lexico‐syntactic methods, including a statistical algorithm that extracts key concepts from a document collection, a word sense disambiguation algorithm that disambiguates words in the key concepts, a rule‐based algorithm that extracts relations between the key concepts, and a modified generalized association rule mining algorithm that prunes unimportant relations for ontology learning. As a result, the ontologies learned by CRCTOL are more concise and contain a richer semantics in terms of the range and number of semantic relations compared with alternative systems. We present two case studies where CRCTOL is used to build a terrorism domain ontology and a sport event domain ontology. At the component level, quantitative evaluation by comparing with Text‐To‐Onto and its successor Text2Onto has shown that CRCTOL is able to extract concepts and semantic relations with a significantly higher level of accuracy. At the ontology level, the quality of the learned ontologies is evaluated by either employing a set of quantitative and qualitative methods including analyzing the graph structural property, comparison to WordNet, and expert rating, or directly comparing with a human‐edited benchmark ontology, demonstrating the high quality of the ontologies learned.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.21231
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:61:y:2010:i:1:p:150-168
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().