Data mining emotion in social network communication: Gender differences in MySpace
Mike Thelwall,
David Wilkinson and
Sukhvinder Uppal
Journal of the American Society for Information Science and Technology, 2010, vol. 61, issue 1, 190-199
Abstract:
Despite the rapid growth in social network sites and in data mining for emotion (sentiment analysis), little research has tied the two together, and none has had social science goals. This article examines the extent to which emotion is present in MySpace comments, using a combination of data mining and content analysis, and exploring age and gender. A random sample of 819 public comments to or from U.S. users was manually classified for strength of positive and negative emotion. Two thirds of the comments expressed positive emotion, but a minority (20%) contained negative emotion, confirming that MySpace is an extraordinarily emotion‐rich environment. Females are likely to give and receive more positive comments than are males, but there is no difference for negative comments. It is thus possible that females are more successful social network site users partly because of their greater ability to textually harness positive affect.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
https://doi.org/10.1002/asi.21180
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:61:y:2010:i:1:p:190-199
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().