When stopword lists make the difference
Ljiljana Dolamic and
Jacques Savoy
Journal of the American Society for Information Science and Technology, 2010, vol. 61, issue 1, 200-203
Abstract:
In this brief communication, we evaluate the use of two stopword lists for the English language (one comprising 571 words and another with 9) and compare them with a search approach accounting for all word forms. We show that through implementing the original Okapi form or certain ones derived from the Divergence from Randomness (DFR) paradigm, significantly lower performance levels may result when using short or no stopword lists. For other DFR models and a revised Okapi implementation, performance differences between approaches using short or long stopword lists or no list at all are usually not statistically significant. Similar conclusions can be drawn when using other natural languages such as French, Hindi, or Persian.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.21186
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:61:y:2010:i:1:p:200-203
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().