Document categorization in legal electronic discovery: computer classification vs. manual review
Herbert L. Roitblat,
Anne Kershaw and
Patrick Oot
Journal of the American Society for Information Science and Technology, 2010, vol. 61, issue 1, 70-80
Abstract:
In litigation in the US, the parties are obligated to produce to one another, when requested, those documents that are potentially relevant to issues and facts of the litigation (called “discovery”). As the volume of electronic documents continues to grow, the expense of dealing with this obligation threatens to surpass the amounts at issue and the time to identify these relevant documents can delay a case for months or years. The same holds true for government investigations and third‐parties served with subpoenas. As a result, litigants are looking for ways to reduce the time and expense of discovery. One approach is to supplant or reduce the traditional means of having people, usually attorneys, read each document, with automated procedures that use information retrieval and machine categorization to identify the relevant documents. This study compared an original categorization, obtained as part of a response to a Department of Justice Request and produced by having one or more of 225 attorneys review each document with automated categorization systems provided by two legal service providers. The goal was to determine whether the automated systems could categorize documents at least as well as human reviewers could, thereby saving time and expense. The results support the idea that machine categorization is no less accurate at identifying relevant/responsive documents than employing a team of reviewers. Based on these results, it would appear that using machine categorization can be a reasonable substitute for human review.
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asi.21233
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:61:y:2010:i:1:p:70-80
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().