Intertopic information mining for query‐based summarization
You Ouyang,
Wenjie Li,
Sujian Li and
Qin Lu
Journal of the American Society for Information Science and Technology, 2010, vol. 61, issue 5, 1062-1072
Abstract:
In this article, the authors address the problem of sentence ranking in summarization. Although most existing summarization approaches are concerned with the information embodied in a particular topic (including a set of documents and an associated query) for sentence ranking, they propose a novel ranking approach that incorporates intertopic information mining. Intertopic information, in contrast to intratopic information, is able to reveal pairwise topic relationships and thus can be considered as the bridge across different topics. In this article, the intertopic information is used for transferring word importance learned from known topics to unknown topics under a learning‐based summarization framework. To mine this information, the authors model the topic relationship by clustering all the words in both known and unknown topics according to various kinds of word conceptual labels, which indicate the roles of the words in the topic. Based on the mined relationships, we develop a probabilistic model using manually generated summaries provided for known topics to predict ranking scores for sentences in unknown topics. A series of experiments have been conducted on the Document Understanding Conference (DUC) 2006 data set. The evaluation results show that intertopic information is indeed effective for sentence ranking and the resultant summarization system performs comparably well to the best‐performing DUC participating systems on the same data set.
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asi.21299
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:61:y:2010:i:5:p:1062-1072
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().