EconPapers    
Economics at your fingertips  
 

Understanding image needs in daily life by analyzing questions in a social Q&A site

JungWon Yoon and EunKyung Chung

Journal of the American Society for Information Science and Technology, 2011, vol. 62, issue 11, 2201-2213

Abstract: Compared with search queries, which are usually composed of a few keywords, natural language questions can demonstrate detailed information needs through searchers' richer expressions. This study aims to provide understandings of ordinary people's image needs in their daily life, by analyzing 474 questions obtained from a social question and answer (social Q&A) site. The study found that image needs reflected through the natural language questions contain several components: context of image needs (motive and intervening variables), image attributes (descriptive metadata, syntactic, and semantic attributes), and associated information (information on known/similar/comparative images and related stories). Characteristics of each component of image needs were analyzed, and accordingly image‐indexing guidelines were suggested. Because image needs comprise diverse attributes, a single indexing approach might not support all complex needs for images. Therefore, this study proposes that different indexing approaches should be integrated for enhancing keyword search and browsing effectiveness. Such approaches include descriptive metadata assigned by a creator and/or automatic algorithms, user‐assigned tags (or users' reactions), indexing through associated text, and content‐based image retrieval.

Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asi.21637

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:62:y:2011:i:11:p:2201-2213

Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890

Access Statistics for this article

More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jamist:v:62:y:2011:i:11:p:2201-2213