Who is going to win the next Association for the Advancement of Artificial Intelligence Fellowship Award? Evaluating researchers by mining bibliographic data
Lior Rokach,
Meir Kalech,
Ido Blank and
Rami Stern
Journal of the American Society for Information Science and Technology, 2011, vol. 62, issue 12, 2456-2470
Abstract:
Accurately evaluating a researcher and the quality of his or her work is an important task when decision makers have to decide on such matters as promotions and awards. Publications and citations play a key role in this task, and many previous studies have proposed using measurements based on them for evaluating researchers. Machine learning techniques as a way of enhancing the evaluating process have been relatively unexplored. We propose using a machine learning approach for evaluating researchers. In particular, the proposed method combines the outputs of three learning techniques (logistics regression, decision trees, and artificial neural networks) to obtain a unified prediction with improved accuracy. We conducted several experiments to evaluate the model's ability to: (a) classify researchers in the field of artificial intelligence as Association for the Advancement of Artificial Intelligence (AAAI) fellows and (b) predict the next AAAI fellowship winners. We show that both our classification and prediction methods are more accurate than are previous measurement methods, and reach a precision rate of 96% and a recall of 92%.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/asi.21638
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:62:y:2011:i:12:p:2456-2470
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().