Evaluating the performance of geographical locations within scientific networks using an aggregation—randomization—re‐sampling approach (ARR)
Stefan Hennemann
Journal of the American Society for Information Science and Technology, 2012, vol. 63, issue 12, 2393-2404
Abstract:
Knowledge creation and dissemination in science and technology systems are perceived as prerequisites for socioeconomic development. The efficiency of creating new knowledge is considered to have a geographical component, that is, some regions are more capable in terms of scientific knowledge production than others. This article presents a method of using a network representation of scientific interaction to assess the relative efficiency of regions with diverse boundaries in channeling knowledge through a science system. In a first step, a weighted aggregate of the betweenness centrality is produced from empirical data (aggregation). The subsequent randomization of this empirical network produces the necessary null model for significance testing and normalization (randomization). This step is repeated to provide greater confidence about the results (re‐sampling). The results are robust estimates for the relative regional efficiency of brokering knowledge, which is discussed along with cross‐sectional and longitudinal empirical examples. The network representation acts as a straightforward metaphor of conceptual ideas from economic geography and neighboring disciplines. However, the procedure is not limited to centrality measures, nor is it limited to geographical aggregates. Therefore, it offers a wide range of applications for scientometrics and beyond.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.22739
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jamist:v:63:y:2012:i:12:p:2393-2404
Ordering information: This journal article can be ordered from
https://doi.org/10.1002/(ISSN)1532-2890
Access Statistics for this article
More articles in Journal of the American Society for Information Science and Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().