EconPapers    
Economics at your fingertips  
 

BAYESIAN INFERENCE METHODS FOR UNIVARIATE AND MULTIVARIATE GARCH MODELS: A SURVEY

Audrone Virbickaite, M. Concepción Ausín and Pedro Galeano

Journal of Economic Surveys, 2015, vol. 29, issue 1, 76-96

Abstract: This survey reviews the existing literature on the most relevant Bayesian inference methods for univariate and multivariate GARCH models. The advantages and drawbacks of each procedure are outlined as well as the advantages of the Bayesian approach versus classical procedures. The paper makes emphasis on recent Bayesian non-parametric approaches for GARCH models that avoid imposing arbitrary parametric distributional assumptions. These novel approaches implicitly assume infinite mixture of Gaussian distributions on the standardized returns which have been shown to be more flexible and describe better the uncertainty about future volatilities. Finally, the survey presents an illustration using real data to show the flexibility and usefulness of the non-parametric approach.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://hdl.handle.net/10.1111/joes.12046 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jecsur:v:29:y:2015:i:1:p:76-96

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0950-0804

Access Statistics for this article

More articles in Journal of Economic Surveys from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jecsur:v:29:y:2015:i:1:p:76-96