Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models
Svetlana Bryzgalova,
Jiantao Huang and
Christian Julliard
Journal of Finance, 2023, vol. 78, issue 1, 487-557
Abstract:
We propose a novel framework for analyzing linear asset pricing models: simple, robust, and applicable to high‐dimensional problems. For a (potentially misspecified) stand‐alone model, it provides reliable price of risk estimates for both tradable and nontradable factors, and detects those weakly identified. For competing factors and (possibly nonnested) models, the method automatically selects the best specification—if a dominant one exists—or provides a Bayesian model averaging–stochastic discount factor (BMA‐SDF), if there is no clear winner. We analyze 2.25 quadrillion models generated by a large set of factors and find that the BMA‐SDF outperforms existing models in‐ and out‐of‐sample.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1111/jofi.13197
Related works:
Working Paper: Bayesian solutions for the factor zoo: we just ran two quadrillion models (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jfinan:v:78:y:2023:i:1:p:487-557
Ordering information: This journal article can be ordered from
http://www.afajof.org/membership/join.asp
Access Statistics for this article
More articles in Journal of Finance from American Finance Association Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().