EconPapers    
Economics at your fingertips  
 

A shared component model for detecting joint and selective clustering of two diseases

Leonhard Knorr‐Held and Nicola G. Best

Journal of the Royal Statistical Society Series A, 2001, vol. 164, issue 1, 73-85

Abstract: The study of spatial variations in disease rates is a common epidemiological approach used to describe the geographical clustering of diseases and to generate hypotheses about the possible ‘causes’ which could explain apparent differences in risk. Recent statistical and computational developments have led to the use of realistically complex models to account for overdispersion and spatial correlation. However, these developments have focused almost exclusively on spatial modelling of a single disease. Many diseases share common risk factors (smoking being an obvious example) and, if similar patterns of geographical variation of related diseases can be identified, this may provide more convincing evidence of real clustering in the underlying risk surface. We propose a shared component model for the joint spatial analysis of two diseases. The key idea is to separate the underlying risk surface for each disease into a shared and a disease‐specific component. The various components of this formulation are modelled simultaneously by using spatial cluster models implemented via reversible jump Markov chain Monte Carlo methods. We illustrate the methodology through an analysis of oral and oesophageal cancer mortality in the 544 districts of Germany, 1986–1990.

Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
https://doi.org/10.1111/1467-985X.00187

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:164:y:2001:i:1:p:73-85

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:164:y:2001:i:1:p:73-85