Multiparameter evidence synthesis in epidemiology and medical decision‐making: current approaches
A. E. Ades and
A. J. Sutton
Journal of the Royal Statistical Society Series A, 2006, vol. 169, issue 1, 5-35
Abstract:
Summary. Alongside the development of meta‐analysis as a tool for summarizing research literature, there is renewed interest in broader forms of quantitative synthesis that are aimed at combining evidence from different study designs or evidence on multiple parameters. These have been proposed under various headings: the confidence profile method, cross‐design synthesis, hierarchical models and generalized evidence synthesis. Models that are used in health technology assessment are also referred to as representing a synthesis of evidence in a mathematical structure. Here we review alternative approaches to statistical evidence synthesis, and their implications for epidemiology and medical decision‐making. The methods include hierarchical models, models informed by evidence on different functions of several parameters and models incorporating both of these features. The need to check for consistency of evidence when using these powerful methods is emphasized. We develop a rationale for evidence synthesis that is based on Bayesian decision modelling and expected value of information theory, which stresses not only the need for a lack of bias in estimates of treatment effects but also a lack of bias in assessments of uncertainty. The increasing reliance of governmental bodies like the UK National Institute for Clinical Excellence on complex evidence synthesis in decision modelling is discussed.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2005.00377.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:169:y:2006:i:1:p:5-35
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().