Model choice in time series studies of air pollution and mortality
Roger D. Peng,
Francesca Dominici and
Thomas A. Louis
Journal of the Royal Statistical Society Series A, 2006, vol. 169, issue 2, 179-203
Abstract:
Summary. Multicity time series studies of particulate matter and mortality and morbidity have provided evidence that daily variation in air pollution levels is associated with daily variation in mortality counts. These findings served as key epidemiological evidence for the recent review of the US national ambient air quality standards for particulate matter. As a result, methodological issues concerning time series analysis of the relationship between air pollution and health have attracted the attention of the scientific community and critics have raised concerns about the adequacy of current model formulations. Time series data on pollution and mortality are generally analysed by using log‐linear, Poisson regression models for overdispersed counts with the daily number of deaths as outcome, the (possibly lagged) daily level of pollution as a linear predictor and smooth functions of weather variables and calendar time used to adjust for time‐varying confounders. Investigators around the world have used different approaches to adjust for confounding, making it difficult to compare results across studies. To date, the statistical properties of these different approaches have not been comprehensively compared. To address these issues, we quantify and characterize model uncertainty and model choice in adjusting for seasonal and long‐term trends in time series models of air pollution and mortality. First, we conduct a simulation study to compare and describe the properties of statistical methods that are commonly used for confounding adjustment. We generate data under several confounding scenarios and systematically compare the performance of the various methods with respect to the mean‐squared error of the estimated air pollution coefficient. We find that the bias in the estimates generally decreases with more aggressive smoothing and that model selection methods which optimize prediction may not be suitable for obtaining an estimate with small bias. Second, we apply and compare the modelling approaches with the National Morbidity, Mortality, and Air Pollution Study database which comprises daily time series of several pollutants, weather variables and mortality counts covering the period 1987–2000 for the largest 100 cities in the USA. When applying these approaches to adjusting for seasonal and long‐term trends we find that the Study's estimates for the national average effect of PM10 at lag 1 on mortality vary over approximately a twofold range, with 95% posterior intervals always excluding zero risk.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2006.00410.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:169:y:2006:i:2:p:179-203
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().