Reducing bias in ecological studies: an evaluation of different methodologies
Gillian A. Lancaster,
Mick Green and
Steven Lane
Journal of the Royal Statistical Society Series A, 2006, vol. 169, issue 4, 681-700
Abstract:
Summary. Statistical methods of ecological analysis that attempt to reduce ecological bias are empirically evaluated to determine in which circumstances each method might be practicable. The method that is most successful at reducing ecological bias is stratified ecological regression. It allows individual level covariate information to be incorporated into a stratified ecological analysis, as well as the combination of disease and risk factor information from two separate data sources, e.g. outcomes from a cancer registry and risk factor information from the census sample of anonymized records data set. The aggregated individual level model compares favourably with this model but has convergence problems. In addition, it is shown that the large areas that are covered by local authority districts seem to reduce between‐area variability and may therefore not be as informative as conducting a ward level analysis. This has policy implications because access to ward level data is restricted.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2006.00418.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:169:y:2006:i:4:p:681-700
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().