On the analysis of long‐term experiments
Thomas M. Loughin,
Mollie Poehlman Roediger,
George A. Milliken and
John P. Schmidt
Journal of the Royal Statistical Society Series A, 2007, vol. 170, issue 1, 29-42
Abstract:
Summary. Long‐term experiments are commonly used tools in agronomy, soil science and other disciplines for comparing the effects of different treatment regimes over an extended length of time. Periodic measurements, typically annual, are taken on experimental units and are often analysed by using customary tools and models for repeated measures. These models contain nothing that accounts for the random environmental variations that typically affect all experimental units simultaneously and can alter treatment effects. This added variability can dominate that from all other sources and can adversely influence the results of a statistical analysis and interfere with its interpretation. The effect that this has on the standard repeated measures analysis is quantified by using an alternative model that allows for random variations over time. This model, however, is not useful for analysis because the random effects are confounded with fixed effects that are already in the repeated measures model. Possible solutions are reviewed and recommendations are made for improving statistical analysis and interpretation in the presence of these extra random variations.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2006.00435.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:170:y:2007:i:1:p:29-42
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().