A Bayesian model for ranking hazardous road sites
Tom Brijs,
Dimitris Karlis,
Filip Van den Bossche and
Geert Wets
Journal of the Royal Statistical Society Series A, 2007, vol. 170, issue 4, 1001-1017
Abstract:
Summary. Road safety has recently become a major concern in most modern societies. The identification of sites that are more dangerous than others (black spots) can help in better scheduling road safety policies. This paper proposes a methodology for ranking sites according to their level of hazard. The model is innovative in at least two respects. Firstly, it makes use of all relevant information per accident location, including the total number of accidents and the number of fatalities, as well as the number of slight and serious injuries. Secondly, the model includes the use of a cost function to rank the sites with respect to their total expected cost to society. Bayesian estimation for the model via a Markov chain Monte Carlo approach is proposed. Accident data from 519 intersections in Leuven (Belgium) are used to illustrate the methodology proposed. Furthermore, different cost functions are used to show the effect of the proposed method on the use of different costs per type of injury.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2007.00486.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:170:y:2007:i:4:p:1001-1017
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().