Avoiding ‘data snooping’ in multilevel and mixed effects models
David Afshartous and
Michael Wolf
Journal of the Royal Statistical Society Series A, 2007, vol. 170, issue 4, 1035-1059
Abstract:
Summary. Multilevel or mixed effects models are commonly applied to hierarchical data. The level 2 residuals, which are otherwise known as random effects, are often of both substantive and diagnostic interest. Substantively, they are frequently used for institutional comparisons or rankings. Diagnostically, they are used to assess the model assumptions at the group level. Inference on the level 2 residuals, however, typically does not account for ‘data snooping’, i.e. for the harmful effects of carrying out a multitude of hypothesis tests at the same time. We provide a very general framework that encompasses both of the following inference problems: inference on the ‘absolute’ level 2 residuals to determine which are significantly different from 0, and inference on any prespecified number of pairwise comparisons. Thus, the user has the choice of testing the comparisons of interest. As our methods are flexible with respect to the estimation method that is invoked, the user may choose the desired estimation method accordingly. We demonstrate the methods with the London education authority data, the wafer data and the National Educational Longitudinal Study data.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2007.00494.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:170:y:2007:i:4:p:1035-1059
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().