Clustering work and family trajectories by using a divisive algorithm
Raffaella Piccarreta and
Francesco Billari
Journal of the Royal Statistical Society Series A, 2007, vol. 170, issue 4, 1061-1078
Abstract:
Summary. We present an approach to the construction of clusters of life course trajectories and use it to obtain ideal types of trajectories that can be interpreted and analysed meaningfully. We represent life courses as sequences on a monthly timescale and apply optimal matching analysis to compute dissimilarities between individuals. We introduce a new divisive clustering algorithm which has features that are in common with both Ward's agglomerative algorithm and classification and regression trees. We analyse British Household Panel Survey data on the employment and family trajectories of women. Our method produces clusters of sequences for which it is straightforward to determine who belongs to each cluster, making it easier to interpret the relative importance of life course factors in distinguishing subgroups of the population. Moreover our method gives guidance on selecting the number of clusters.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2007.00495.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:170:y:2007:i:4:p:1061-1078
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().