Model‐based measurement of latent risk in time series with applications
Frits Bijleveld,
Jacques Commandeur,
Phillip Gould and
Siem Jan Koopman
Journal of the Royal Statistical Society Series A, 2008, vol. 171, issue 1, 265-277
Abstract:
Summary. Risk is at the centre of many policy decisions in companies, governments and other institutions. The risk of road fatalities concerns local governments in planning countermeasures, the risk and severity of counterparty default concerns bank risk managers daily and the risk of infection has actuarial and epidemiological consequences. However, risk cannot be observed directly and it usually varies over time. We introduce a general multivariate time series model for the analysis of risk based on latent processes for the exposure to an event, the risk of that event occurring and the severity of the event. Linear state space methods can be used for the statistical treatment of the model. The new framework is illustrated for time series of insurance claims, credit card purchases and road safety. It is shown that the general methodology can be effectively used in the assessment of risk.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2007.00496.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:171:y:2008:i:1:p:265-277
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().