Joint generalized estimating equations for multivariate longitudinal binary outcomes with missing data: an application to acquired immune deficiency syndrome data
Stuart R. Lipsitz,
Garrett M. Fitzmaurice,
Joseph G. Ibrahim,
Debajyoti Sinha,
Michael Parzen and
Steven Lipshultz
Journal of the Royal Statistical Society Series A, 2009, vol. 172, issue 1, 3-20
Abstract:
Summary. In a large, prospective longitudinal study designed to monitor cardiac abnormalities in children born to women who are infected with the human immunodeficiency virus, instead of a single outcome variable, there are multiple binary outcomes (e.g. abnormal heart rate, abnormal blood pressure and abnormal heart wall thickness) considered as joint measures of heart function over time. In the presence of missing responses at some time points, longitudinal marginal models for these multiple outcomes can be estimated by using generalized estimating equations (GEEs), and consistent estimates can be obtained under the assumption of a missingness completely at random mechanism. When the missing data mechanism is missingness at random, i.e. the probability of missing a particular outcome at a time point depends on observed values of that outcome and the remaining outcomes at other time points, we propose joint estimation of the marginal models by using a single modified GEE based on an EM‐type algorithm. The method proposed is motivated by the longitudinal study of cardiac abnormalities in children who were born to women infected with the human immunodeficiency virus, and analyses of these data are presented to illustrate the application of the method. Further, in an asymptotic study of bias, we show that, under a missingness at random mechanism in which missingness depends on all observed outcome variables, our joint estimation via the modified GEE produces almost unbiased estimates, provided that the correlation model has been correctly specified, whereas estimates from standard GEEs can lead to substantial bias.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2008.00564.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:172:y:2009:i:1:p:3-20
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().