EconPapers    
Economics at your fingertips  
 

Bayesian inference for transportation origin–destination matrices: the Poisson–inverse Gaussian and other Poisson mixtures

Konstantinos Perrakis, Dimitris Karlis, Mario Cools and Davy Janssens

Journal of the Royal Statistical Society Series A, 2015, vol. 178, issue 1, 271-296

Abstract: type="main" xml:id="rssa12057-abs-0001">

Transportation origin–destination analysis is investigated through the use of Poisson mixtures by introducing covariate-based models which incorporate different transport modelling phases and also allow for direct probabilistic inference on link traffic based on Bayesian predictions. Emphasis is placed on the Poisson–inverse Gaussian model as an alternative to the commonly used Poisson–gamma and Poisson–log-normal models. We present a first full Bayesian formulation and demonstrate that the Poisson–inverse Gaussian model is particularly suited for origin–destination analysis because of its desirable marginal and hierarchical properties. In addition, the integrated nested Laplace approximation is considered as an alternative to Markov chain Monte Carlo sampling and the two methodologies are compared under specific modelling assumptions. The case-study is based on 2001 Belgian census data and focuses on a large, sparsely distributed origin–destination matrix containing trip information for 308 Flemish municipalities.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssa.2014.178.issue-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:178:y:2015:i:1:p:271-296

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:178:y:2015:i:1:p:271-296