Private information in healthcare utilization: specification of a copula-based hurdle model
Peng Shi and
Wei Zhang
Journal of the Royal Statistical Society Series A, 2015, vol. 178, issue 2, 337-361
Abstract:
type="main" xml:id="rssa12065-abs-0001">
We study whether individuals' private information on health risk affects their medical care utilization. The presence of such information asymmetry is critical to the optimal payment design in healthcare systems. To do so, we examine the relationship between self-perceived health status and healthcare expenditures. Because of simultaneity, we employ a copula regression to model jointly the mixed outcomes, with the association parameter capturing the residual dependence conditional on covariates. The semicontinuous nature of healthcare expenditures leads to a two-part interpretation of private health information: the hurdle component assesses its effect on the likelihood of using medical care services, and the conditional component quantifies its effect on the expenditures given consumption of care. The methodology proposed is applied to a survey data set of a sample of the US civilian non-institutionalized population to test and quantify the effects of private health information. We find evidence of adverse selection in the utilization of various types of medical care services.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssa.2015.178.issue-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:178:y:2015:i:2:p:337-361
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().