EconPapers    
Economics at your fingertips  
 

Profile identification via weighted related metric scaling: an application to dependent Spanish children

Irene Albarrán, Pablo Alonso and Aurea Grané

Journal of the Royal Statistical Society Series A, 2015, vol. 178, issue 3, 593-618

Abstract: type="main" xml:id="rssa12084-abs-0001">

Disability and dependence (lack of autonomy in performing common everyday actions) affect health status and quality of life; therefore they are significant public health issues. The main purpose of this study is to use classical multi-dimensional scaling techniques to design dependence profiles for Spanish children between 3 and 6 years old. The data come from the Survey about Disabilities, Personal Autonomy and Dependence Situations, 2008. Two distance (or dissimilarity) functions between individuals are considered: the classical approach using Gower's similarity coefficient and weighted related metric scaling. Both approaches can cope with different types of information (quantitative, multistate categorical and binary variables). However, the Euclidean configurations that are obtained via weighted related metric scaling present a higher percentage of explained variability and higher stability.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssa.2015.178.issue-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:178:y:2015:i:3:p:593-618

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:178:y:2015:i:3:p:593-618