Multilevel multivariate modelling of legislative count data, with a hidden Markov chain
Francesco Lagona,
Antonello Maruotti and
Fabio Padovano
Journal of the Royal Statistical Society Series A, 2015, vol. 178, issue 3, 705-723
Abstract:
type="main" xml:id="rssa12089-abs-0001">
The production of legislative acts is affected by multiple sources of latent heterogeneity, due to multilevel and multivariate unobserved factors that operate in conjunction with observed covariates at all the levels of the data hierarchy. We account for these factors by estimating a multilevel Poisson regression model for repeated measurements of bivariate counts of executive and ordinary legislative acts, enacted under multiple Italian governments, nested within legislatures. The model integrates discrete bivariate random effects at the legislature level and Markovian sequences of discrete bivariate random effects at the government level. It can be estimated by a computationally feasible expectation–maximization algorithm. It naturally extends a traditional Poisson regression model to allow for multiple outcomes, longitudinal dependence and multilevel data hierarchy. The model is exploited to detect multiple cycles of legislative supply that arise at multiple timescales in a case-study of Italian legislative production.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssa.2015.178.issue-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Multilevel multivariate modelling of legislative count data, with a hidden Markov chain (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:178:y:2015:i:3:p:705-723
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().