From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects
Erin Hartman,
Richard Grieve,
Roland Ramsahai and
Jasjeet S. Sekhon
Journal of the Royal Statistical Society Series A, 2015, vol. 178, issue 3, 757-778
Abstract:
type="main" xml:id="rssa12094-abs-0001">
Randomized controlled trials (RCTs) can provide unbiased estimates of sample average treatment effects. However, a common concern is that RCTs may fail to provide unbiased estimates of population average treatment effects. We derive the assumptions that are required to identify population average treatment effects from RCTs. We provide placebo tests, which formally follow from the identifying assumptions and can assess whether they hold. We offer new research designs for estimating population effects that use non-randomized studies to adjust the RCT data. This approach is considered in a cost-effectiveness analysis of a clinical intervention: pulmonary artery catheterization.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssa.2015.178.issue-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:178:y:2015:i:3:p:757-778
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().