EconPapers    
Economics at your fingertips  
 

A Bayesian quantile regression model for insurance company costs data

Karthik Sriram, Peng Shi and Pulak Ghosh

Journal of the Royal Statistical Society Series A, 2016, vol. 179, issue 1, 177-202

Abstract: type="main" xml:id="rssa12111-abs-0001">

We examine the average cost function for property and casualty insurers. The cost function describes the relationship between a firm's minimum production cost and outputs. A comparison of cost functions could shed light on the relative cost efficiency of individual firms, which is of interest to many market participants and has been given extensive attention in the insurance industry. To identify and to compare the cost function, current practice is to assume a common functional form between costs and outputs across insurers and then to rank insurers according to the centre of the cost distribution. However, the assumption of a common cost–output relationship could be misleading because insurers tend to adopt different technologies that are reflected by the cost function in their production process. The centre-based comparison could also lead to biased inference especially when the cost distribution is skewed with a heavy tail. To address these issues, we model the average production cost of insurers by using a Bayesian quantile regression approach. Quantile regression enables the modelling of different quantiles of the cost distribution as opposed to just the centre. The Bayesian approach helps to estimate the cost-to-output functional relationship at a firm level by borrowing information across firms. In the analysis of US property–casualty insurers, we show that better insights into efficiency are gained by comparing different quantiles of the cost distribution.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssa.2016.179.issue-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:179:y:2016:i:1:p:177-202

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:179:y:2016:i:1:p:177-202