Generating partially synthetic geocoded public use data with decreased disclosure risk by using differential smoothing
Harrison Quick,
Scott H. Holan and
Christopher K. Wikle
Journal of the Royal Statistical Society Series A, 2018, vol. 181, issue 3, 649-661
Abstract:
When collecting geocoded confidential data with the intent to disseminate, agencies often resort to altering the geographies before making data publicly available. An alternative to releasing aggregated and/or perturbed data is to release synthetic data, where sensitive values are replaced with draws from models designed to capture distributional features in the data collected. The issues associated with spatially outlying observations in the data, however, have received relatively little attention. Our goal here is to shed light on this problem, to propose a solution—referred to as ‘differential smoothing’—and to illustrate our approach by using sale prices of homes in San Francisco.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssa.12360
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:181:y:2018:i:3:p:649-661
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().