Tracking and modelling prices using web‐scraped price microdata: towards automated daily consumer price index forecasting
Ben Powell,
Guy Nason,
Duncan Elliott,
Matthew Mayhew,
Jennifer Davies and
Joe Winton
Journal of the Royal Statistical Society Series A, 2018, vol. 181, issue 3, 737-756
Abstract:
With the increasing relevance and availability of on‐line prices that we see today, it is natural to ask whether the prediction of the consumer price index (CPI), or related statistics, may usefully be computed more frequently than existing monthly schedules allow for. The simple answer is ‘yes’, but there are challenges to be overcome first. A key challenge, addressed by our work, is that web‐scraped price data are extremely messy and it is not obvious, a priori, how to reconcile them with standard CPI statistics. Our research focuses on average prices and disaggregated CPI at the level of product categories (lager, potatoes, etc.) and develops a new model that describes the joint time evolution of latent daily log‐inflation rates driving prices seen on the Internet and prices recorded in official surveys, with the model adapting to various product categories. Our model reveals the differing levels of dynamic behaviour across product category and, correspondingly, differing levels of predictability. Our methodology enables good prediction of product‐category‐specific CPI immediately before their release. In due course, with increasingly complete web‐scraped data, combined with the best survey data, the prospect of more frequent intermonth aggregated CPI prediction is an achievable goal.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/rssa.12314
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:181:y:2018:i:3:p:737-756
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().