Continuous inference for aggregated point process data
Benjamin M. Taylor,
Ricardo Andrade‐Pacheco and
Hugh J. W. Sturrock
Journal of the Royal Statistical Society Series A, 2018, vol. 181, issue 4, 1125-1150
Abstract:
The paper introduces new methods for inference with count data registered on a set of aggregation units. Such data are omnipresent in epidemiology because of confidentiality issues: it is much more common to know the county in which an individual resides, say, than to know their exact location in space. Inference for aggregated data has traditionally made use of models for discrete spatial variation, e.g. conditional auto‐regressive models. We argue that such discrete models can be improved from both a scientific and an inferential perspective by using spatiotemporally continuous models to model the aggregated counts directly. We introduce methods for delivering (limiting) continuous inference with spatiotemporal aggregated count data in which the aggregation units might change over time and are subject to uncertainty. We illustrate our methods by using two examples: from epidemiology, spatial prediction of malaria incidence in Namibia, and, from politics, forecasting voting under the proposed changes to parliamentary boundaries in the UK.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/rssa.12347
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:181:y:2018:i:4:p:1125-1150
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().