EconPapers    
Economics at your fingertips  
 

Generalizing evidence from randomized trials using inverse probability of sampling weights

Ashley L. Buchanan, Michael G. Hudgens, Stephen R. Cole, Katie R. Mollan, Paul E. Sax, Eric S. Daar, Adaora A. Adimora, Joseph J. Eron and Michael J. Mugavero

Journal of the Royal Statistical Society Series A, 2018, vol. 181, issue 4, 1193-1209

Abstract: Results obtained in randomized trials may not easily generalize to target populations. Whereas in randomized trials the treatment assignment mechanism is known, the sampling mechanism by which individuals are selected to participate in the trial is typically not known and assuming random sampling from the target population is often dubious. We consider an inverse probability of sampling weighted (IPSW) estimator for generalizing trial results to a target population. The IPSW estimator is shown to be consistent and asymptotically normal. A consistent sandwich‐type variance estimator is derived and simulation results are presented comparing the IPSW estimator with a previously proposed stratified estimator. The methods are then utilized to generalize results from two randomized trials of human immunodeficiency virus treatment to all people living with the disease in the USA.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://doi.org/10.1111/rssa.12357

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:181:y:2018:i:4:p:1193-1209

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:181:y:2018:i:4:p:1193-1209