Misspecification of multimodal random‐effect distributions in logistic mixed models for panel survey data
Louise Marquart and
Michele Haynes
Journal of the Royal Statistical Society Series A, 2019, vol. 182, issue 1, 305-321
Abstract:
Logistic mixed models for longitudinal binary data typically assume normally distributed random effects, which may be too restrictive if an underlying subpopulation structure exists. The paper illustrates the ease of implementing diagnostic tests and fitting random effects as a mixture of normal distributions to detect and address distributional misspecification of the random effects in a potential mover–stayer scenario. Methods are illustrated by using data from the Household, Income and Labour Dynamics in Australia panel survey. The robustness of the normality assumption to violations characterized by a three‐component mixture of normal distributions was assessed via a simulation study. Adverse inferential impact of incorrectly assuming normality was identified for parameters directly related to the random effects, resulting in biased estimates and poor coverage rates for confidence intervals. The results support the general robustness of fixed effect parameters to non‐extreme distributional violations of the random effects.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/rssa.12385
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:182:y:2019:i:1:p:305-321
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().