EconPapers    
Economics at your fingertips  
 

Bayesian forecasting of mortality rates by using latent Gaussian models

Angelos Alexopoulos, Petros Dellaportas and Jonathan J. Forster

Journal of the Royal Statistical Society Series A, 2019, vol. 182, issue 2, 689-711

Abstract: We provide forecasts for mortality rates by using two different approaches. First we employ dynamic non‐linear logistic models based on the Heligman–Pollard formula. Second, we assume that the dynamics of the mortality rates can be modelled through a Gaussian Markov random field. We use efficient Bayesian methods to estimate the parameters and the latent states of the models proposed. Both methodologies are tested with past data and are used to forecast mortality rates both for large (UK and Wales) and small (New Zealand) populations up to 21 years ahead. We demonstrate that predictions for individual survivor functions and other posterior summaries of demographic and actuarial interest are readily obtained. Our results are compared with other competing forecasting methods.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/rssa.12422

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:182:y:2019:i:2:p:689-711

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:182:y:2019:i:2:p:689-711