Retail credit scoring using fine‐grained payment data
Ellen Tobback and
David Martens
Journal of the Royal Statistical Society Series A, 2019, vol. 182, issue 4, 1227-1246
Abstract:
Banks are continuously looking for novel ways to leverage their existing data assets. A major source of data that has not yet been used to the full extent is massive fine‐grained payment data on the bank's customers. In the paper, a design is proposed that builds predictive credit scoring models by using the fine‐grained payment data. Using a real life data set of 183 million transactions made by 2.6 million customers, we show that the scalable implementation that is put forward leads to a significant improvement in the receiver operating characteristic area under the curve, with only seconds of computation needed. When investigating the 1% riskiest customers, twice as many defaulters are detected when using the payment data. Such an improvement has a big effect on the overall working of the bank, from applicant scoring to minimum capital requirements.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/rssa.12469
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:182:y:2019:i:4:p:1227-1246
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().